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Abstract

We show that Kergin interpolation, a generalized Lagrange–Hermite polynomial

interpolation, may be defined on mappings between general Banach spaces. Like its finite-

dimensional counterpart, Kergin interpolation in this setting is an affine-invariant projector.

We obtain an error formula which we use to approximate holomorphic mappings. As an

application we give a convergence theorem applicable to, for instance, operators on Banach

algebras, such as the algebra of square matrices with complex coefficients.
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1. Introduction

Kergin interpolation is a generalization to several variables of ordinary Lagrange–
Hermite interpolation, cf. [9–11] for the real case and [1,2] for complex Kergin
interpolation, see also [6] where more general mean-value interpolation is studied.
The aim of this paper is to generalize Kergin interpolation to mappings between
Banach spaces.

Recall that one-variable Lagrange interpolation is not merely a matter of
matching function values at certain points, it also enjoys several analytical
properties. Most importantly, Gelfond [7] proved a number of convergence
theorems for sequences of interpolating polynomials, giving conditions on an
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infinite sequence of points and on an entire function f ensuring that the sequence of
successive Lagrange polynomials at the first n points converges to f uniformly on
compact sets as n tends to infinity. Similar theorems hold for Kergin interpolation in
Cn; due to Bloom [4], and this is why it is justifiable to look upon Kergin
interpolation as the ‘‘correct’’ generalization to several variables of one-variable
Lagrange interpolation. It is certainly of interest to obtain such a construction in
general Banach spaces, and we present a convergence result of Gelfond’s type for the
infinite-dimensional Kergin interpolation that we study.

The main tool for defining Kergin interpolation in Rn is the simplex functional,
which, for a given sequence of points ð p0; p1;y; pjÞ in Rn is defined for, say,

functions continuous on the convex hull of the points by

g/

Z
½ p0;p1;y;pj �

g :¼
Z

Sj

gð p0 þ s1ð p1 � p0Þ þ?þ sjð pj � p0ÞÞds1?dsj;

where Sj ¼ fðs1;y; sjÞ: siX0;
P

sip1g is the standard j-simplex in R j: Let Dy

denote the directional derivative along the vector y: Then the Kergin polynomial of a
sufficiently smooth f with respect to a sequence of points p ¼ ð p0; p1;y; pkÞ is

Kp f ðxÞ ¼ f ð p0Þ þ
Z
½ p0;p1�

Dx�p0
f þ?þ

Z
½ p0;p1;y;pk �

Dx�pk�1
?Dx�p0

f :

This definition is also valid in the complex setting for functions holomorphic on the
convex hull of the given points. The Kergin polynomial is the unique polynomial of
degree at most k satisfyingZ

½ p0;p1;y;pj �
Dað f � Kp f Þ ¼ 0; jaj ¼ j; j ¼ 0; 1;y; k:

The Kergin polynomial Kp f matches the values of f at each of the pi: Also, the

operator Kp taking a function to its Kergin polynomial preserves polynomials of

degree at most k and is affine-invariant, in the sense that for every affine map
A :Rn-Rm and any suitably defined function g we have

Kpðg3AÞ ¼ ðKApgÞ3A;

where Ap :¼ ðAð p0Þ;Að p1Þ;y;Að pkÞÞ: Note that in dimension one we have
Genocchi’s formula

½p0; p1;y; pj �f ¼
Z
½ p0;p1;y;pj �

f ð jÞ;

and so the Kergin polynomial in this case is nothing but the Lagrange polynomial in
Newton form (the entity on the left-hand side is, of course, the jth divided difference
of the function f ).

To extend the definition of Kergin interpolation to mappings between general
Banach spaces we need to replace the Lebesgue integral by a Bochner integral to get
a vector valued version of the simplex functional (this is then no longer a functional
in the usual sense of the word). The generalized Kergin polynomial will then have the
same form as above. The main properties of classical Kergin interpolation, including
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Micchelli’s error formula, are easily extended to this setting. They are stated in
Theorems 5.7 and 6.1.

Using the error formula we prove an approximation theorem (Theorem 6.2) which
says that, under certain conditions, the Kergin interpolants of a holomorphic
function converge geometrically fast to the function.

We shall also study Kergin interpolation of entire power series from one Banach
space into another. We obtain a precise result (Theorem 7.1) giving conditions under
which a sequence of Kergin polynomials of an entire power series f converges to f

uniformly on every bounded ball. As was mentioned above, this generalizes results of
Gelfond [7] and Bloom [4]. Our method is different.

We shall start out by listing some standard properties of polynomials in Banach
spaces, holomorphic mappings in Banach spaces and vector valued integration. All
facts presented here are well known, but we include them for completeness and ease
of reference. Also, these introductory sections serve the purpose of fixing the
notation. The reader should observe that we use the same notation ðjj � jjÞ to denote
all the (different) norms of vectors, linear maps and multilinear maps.

2. Polynomials in Banach spaces

Throughout this paper, X and Y will denote complex (or real) Banach spaces. For
each positive integer k we let LkðX ;YÞ denote the set of continuous k-linear

mappings from X k into Y ; i.e. mappings T : X k-Y that are linear in each argument
separately. It is an elementary fact that this is again a Banach space when equipped
with the standard norm

jjT jj :¼ sup
x1a0;y;xka0

jjTðx1;y; xkÞjj
jjx1jj?jjxkjj

;

where x1;y; xkAX : Note that

jjTðx1;y; xkÞjjpjjT jj jjx1jj?jjxkjj:

If TALkðX ;YÞ and x1 ¼ x2 ¼ ? ¼ xk ¼ x; then we will often write

Tðx1;y; xkÞ ¼ Txk:

A mapping H : X-Y is said to be a continuous homogeneous polynomial of degree
k if there exists an LALkðX ;Y Þ such that

HðxÞ ¼ Lxk; xAX :

Given such a homogeneous polynomial H of degree k there exists a unique
symmetric (i.e. invariant under permutation of the variables) continuous k-linear
form B such that

HðxÞ ¼ Bxk:

This symmetric k-linear form is called the polar form of H:
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Now a mapping P : X-Y is called a polynomial if it is a sum of homogeneous
polynomials. To be precise, P is a continuous polynomial of degree d if there exist
mappings L0;L1;y;Ld such that LkALkðX ;Y Þ for k ¼ 0; 1;y; d; Lda0; and for
all xAX ;

PðxÞ ¼ L0 þ L1x þ L2x2 þ?þ Ldxd :

Let f be a mapping from an open subset U of X into Y : If for each point aAU

there exists a linear mapping T : X-Y such that

lim
x-a

jj f ðxÞ � f ðaÞ � Tðx � aÞjj
jjx � ajj ¼ 0;

then f is said to be differentiable on U : The map T is uniquely determined by f and
a; it is called the differential of f at a and will be denoted by Df ðaÞ: Hence a
continuously differentiable function f : U-Y induces a mapping

Df : X-L1ðX ;YÞ: If, for instance, f ðxÞ ¼ Bx j where B is a symmetric j-linear
map, then

Df ðxÞ ¼ Bð�; x;y;xÞ þ Bðx; �; x;y; xÞ þ?þ Bðx;y; x; �Þ ¼ jBðx;y; x; �Þ

with x appearing j � 1 times inside the parentheses.
Higher order differentials are defined in the obvious way, e.g. the second-order

differential of f at a is the differential of Df at a and is denoted by D2 f ðaÞ: Note that
for each k; LkðX ;Y Þ is isometric to L1ðX ;Lk�1ðX ;YÞÞ; which in turn is isometric

to L1ðX ;L1ðX ;Lk�2ðX ;Y ÞÞÞ; and so on. Hence Dk f ðaÞ may be regarded as a

member of LkðX ;YÞ; and it is a classical theorem that Dk f ðaÞ is then a symmetric
k-linear form.

As usual we let CkðU ;YÞ denote the vector space of all k times continuously
differentiable maps from U into Y : This space is endowed with the topology of
uniform convergence on compact sets of the mappings and their differentials up to
order k; i.e. the topology generated by the seminorms

f/ sup
jpk

sup
xAK

jjD j f ðxÞjj;

where K is any compact subset of U : This is often referred to as the Ck topology.
We will also have use for directional derivatives, given by

Dy f ðxÞ ¼ Df ðxÞðyÞ;

i.e. the derivative of f at x in the direction y is the differential of f at x applied to the
vector y:

Throughout this paper, we will denote by BrðxÞ the open ball of radius r centered

at x: Similarly, by BrðxÞ we denote the closed ball of radius r centered at x:
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3. Holomorphic mappings between Banach spaces

Let X and Y be complex Banach spaces and U an open subset of X : A mapping
f : U-Y is said to be holomorphic on U if for every xAU there exist an open
ball BrðxÞCU and a sequence of continuous j-linear mappings LjALjðX ;YÞ such

that

f ðxÞ ¼
XN
j¼0

Ljðx � xÞ j;

uniformly for xABrðxÞ: The sequence Lj is then unique, and in fact Lj ¼ D j f ðxÞ=j!:
In view of the close relation between j-linear mappings and homogeneous
polynomials of degree j; it is of course equivalent to say that f is holomorphic if
there exists a sequence of continuous polynomials Pj such that each Pj is

homogeneous of degree j and

f ðxÞ ¼
XN
j¼0

Pjðx � xÞ;

uniformly for xABrðxÞ:
Variants of the Cauchy integrals are valid, and they give rise to estimates on the

size of the coefficients in the power series.

Proposition 3.1. Let X and Y be complex Banach spaces, and let U be an open subset

of X : If f : U-Y is holomorphic and BrðxÞCU for some r40; then, for each jX0;

jjD j f ðxÞjjpj j sup
jjx�xjj¼r

jj f ðxÞjj
 !

r�j:

Proof. See Proposition 3 of Chapter 6 in [13] or [12]. &

4. Vector valued integration

Let ðX ;S; mÞ be a finite measure space and let Y be a Banach space. A mapping
f : X-Y is said to be simple if there exist disjoint sets E1;y;Ek in S and vectors
y1;y; yk in Y such that, for all xAX ;

f ðxÞ ¼
Xk

j¼1

wjðxÞyj ;

where wj is the characteristic function of Ej: The Bochner integral of such an f over

any set E in S is then defined to beZ
E

f dm ¼
Xk

j¼1

mðE-EjÞyj :
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A mapping f : X-Y is said to be measurable if there exists a sequence of simple
mappings fn that converges to f almost everywhere. A measurable mapping
f : X-Y is said to be Bochner integrable if there exists a sequence of simple
mappings fn such that

lim
n-N

Z
X

jj fn � f jj dm ¼ 0:

Then the Bochner integral of f over any E in S is defined byZ
E

f dm ¼ lim
n-N

Z
E

fn dm:

This is well-defined, and it turns out that, for example, all continuous mappings are
Bochner integrable. Also, analogues of the standard Lebesgue theorems hold in this
setting, cf. [5]. The following proposition is useful.

Proposition 4.1. Let ðX ;S; mÞ be a finite measure space and f : X-Y Bochner

integrable. Then the following holds:

(1) For each continuous linear functional c in the dual space X �; the function c3f is

integrable and for all E in S

c
Z

E

f dm
� �

¼
Z

E

c3f dm:

(2) The function jj f jj: X-R is integrable and for all E in SZ
E

f dm
����

����
����

����p
Z

E

jj f jj dm:

Proof. See Proposition 6.4 in [12]. &

5. Kergin interpolation in Banach spaces

In the finite-dimensional case, the coefficients of the Kergin polynomial are (linear
combinations of) so-called simplex functionals. Let us first generalize this concept to
the Banach space setting.

Definition 5.1. Let p ¼ ð p0; p1;y; pjÞ be a sequence of points in X : The simplex

functional with respect to p is defined for any function g continuous on the convex
hull of p by

g/

Z
½ p0;p1;y;pj �

g :¼
Z

Sj

gð p0 þ s1ð p1 � p0Þ þ?þ sjð pj � p0ÞÞ ds1?dsj ;

where Sj ¼ fðs1;y; sjÞ: siX0;
P

sip1g is the standard j-simplex in R j :

ARTICLE IN PRESS
L. Filipsson / Journal of Approximation Theory 127 (2004) 108–123 113



Remark 5.2. The integral on the right in Definition 5.1 is a Bochner integral with
respect to Lebesgue measure. Hence our simplex functional takes values in a Banach
space and is not a functional in the usual sense.

Remark 5.3. When g is scalar-valued, many properties of the finite-dimensional
simplex functional immediately generalize to the infinite-dimensional setting, since
everything takes place inside the finite-dimensional affine subspace spanned by the
points in the sequence p: To be precise, let P be the vector space spanned by p: ThenZ

½ p�
g ¼

Z
½ p�

gjP;

where on the right-hand side everything lives in the finite-dimensional space P ðgjP
denotes the restriction of g to P). This means that all the known results about the
simplex functional on finite-dimensional spaces extend immediately to scalar-valued
functions on infinite-dimensional Banach spaces.

Proposition 5.4. Let p ¼ ð p0; p1;y; pjÞ be a sequence of vectors in the Banach space

X and let O be the convex hull of p: The simplex functional defined above has the

following properties:

(1) For every continuous mapping f :O-Y ; the vector
R
½ p� g is independent of the

ordering of the points in p:
(2) It is affine-invariant, in the sense that if A is a continuous affine map of X into

another Banach space Z; and g : AðOÞ-Y is continuous, thenZ
½ p�

g3A ¼
Z
½Ap�

g;

where Ap ¼ ðAð p0Þ;Að p1Þ;y;Að pjÞÞ:

Proof. Using Proposition 4.1 and the affine invariance in the finite-dimensional case
(and Remark 5.3 above), we get, for each continuous linear functional c on Y ;

c
Z
½Ap�

g

 !
¼
Z
½Ap�

c3g ¼
Z
½ p�

c3g3A ¼ c
Z
½ p�

g3A

 !
:

Since the functionals separate points, (2) follows. Property (1) follows in a
similar way from the corresponding property in the finite-dimensional case and
Proposition 4.1. &

Now we can define the Kergin polynomial associated to a mapping f with respect
to a sequence p of vectors.

Definition 5.5. Let X and Y be complex (or real) Banach spaces and let U be a
convex open subset of X : If p ¼ ð p0; p1;y; pkÞ is a sequence of vectors in U and
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fACkðU ;YÞ; then the Kergin polynomial of f with respect to p is defined by

Kp f ðxÞ ¼ f ð p0Þ þ
Z
½ p0;p1�

Dx�p0
f þ?þ

Z
½ p0;p1;y;pk �

Dx�pk�1
?Dx�p0

f :

The following proposition shows that we can essentially restrict our study to
scalar-valued functions.

Proposition 5.6. Let Kp f be as in Definition 5.5. For every continuous linear functional

c on Y ; we have for all x;

cðKp f ðxÞÞ ¼ Kpðc3f ÞðxÞ: ð5:1Þ

Proof. With the above notation, we have

c
Z
½ p0;y;pi �

Dx�pi�1
?Dx�p0

f

 !
¼
Z
½ p0;y;pi �

cðDx�pi�1
?Dx�p0

f Þ

¼
Z
½ p0;y;pi �

Dx�pi�1
?Dx�p0

ðc3f Þ:

Summing up for i ¼ 0;y; k we get the desired formula. &

On the other hand, if V is a finite-dimensional subspace of X that contains all of
the pi together with x; then we have

Kp f ðxÞ ¼ Kpð f jVÞðxÞ: ð5:2Þ

Combining (5.1) and (5.2), we get

cðKp f ðxÞÞ ¼ Kpðc3f jVÞðxÞ; ð5:3Þ

where the Kergin operator on the right-hand side is the classical one. This leads to an
immediate extension of basic properties of classical Kergin interpolation. The
following theorem states these properties.

Theorem 5.7. Let X and Y be complex (or real) Banach spaces and let U be a convex

open subset of X : If fACkðU ;YÞ and p ¼ ð p0; p1;y; pkÞ is a sequence of vectors in U ;
then the mapping Kp f defined above is a polynomial of degree at most k such that

Kp f ð pjÞ ¼ f ð pjÞ; j ¼ 0; 1;y; k: ð5:4Þ

Moreover, the operator Kp : CkðU ;Y Þ-CkðU ;YÞ taking a function to its Kergin

polynomial is continuous in the Ck topology, and it has the following properties:

(1) It is independent of the ordering of the points in the sequence p:
(2) It is associative, i.e. if pCq then Kp f ¼ KpKq f :

(3) It is affine-invariant, in the sense that if f ¼ g3A; where A is a continuous affine

map from X into a Banach space Z and gACkðAðUÞ;YÞ; then

Kp f ¼ Kpðg3AÞ ¼ ðKApgÞ3A:
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(4) It is a projector, i.e. if f already is a polynomial of degree at most k; then

Kp f ðxÞ ¼ f ðxÞ; xAU :

Proof. To show that Kpf is a polynomial, it is enough to show that each of the terms

in the sum defining Kp f is a polynomial, and this is immediate from the definitions.

The degree is obviously at most k:
The continuity of the operator Kp is easily deduced from Proposition 5.6, using the

seminorms defining the Ck topology and the fact that the convex hull of a finite
number of points is a compact subset of U :

We prove that Kp f has the interpolating property (5.4). Let V be a finite-

dimensional subspace that contains p: For every continuous linear functional c on Y

we have, in view of (5.3),

cðKp f ð pjÞÞ ¼ Kpðc3f jVÞð pjÞ ¼ cð f ð pjÞÞ:

Here the second equality follows from the classical result. Now since functionals
separate points we deduce that Kp f ð pjÞ ¼ f ð pjÞ:

Properties (1)–(4) follow easily in the same way from similar properties in the
finite-dimensional case. Let us just explain the last one. Let q be a degree k

polynomial. We shall prove that for all xAX ; KpqðxÞ ¼ qðxÞ: Fix x and take V to be

a finite-dimensional subspace of X that contains p and x: For every c as above,
c3qjV is a classical polynomial of degree at most k; and consequently Kpðc3qjVÞðxÞ ¼
ðc3qjVÞðxÞ ¼ cðqðxÞÞ: It follows that KpqðxÞ ¼ qðxÞ: &

Remark 5.8. A result similar to Theorem 5.7 holds for holomorphic mappings
defined in so-called C-convex domains, see [3,6] or [8] for the definition and further
properties of such domains. This will be treated in a forthcoming paper.

6. An error formula

This section is devoted to obtaining an error formula for Banach space Kergin
interpolation. Our formula is a generalization of Micchelli’s formula in [10], which in
turn is a multi-variate analogue of the formula

gðtÞ � LpgðtÞ ¼ ½ p0; p1;y; pk; t�g;

valid for the Lagrange polynomial Lpg of a one-variable function g: We will prove

the following.

Theorem 6.1. Let X and Y be complex (or real) Banach spaces and let U be a convex

open subset of X : If fACkðU ;YÞ and p ¼ ð p0; p1;y; pkÞ is a sequence of vectors in U ;
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then, for each xAU ;

f ðxÞ � Kp f ðxÞ ¼
Z
½ p0;p1;y;pk ;x�

Dx�pk
?Dx�p0

f : ð6:1Þ

Proof. This is again a consequence of the classical formula via (5.3). Fix xAU

and let V be a finite-dimensional subspace that contains p and x: For every
continuous linear functional c we have, using the classical result at the second
equality,

cð f ðxÞ � Kp f ðxÞÞ ¼ ðc3f jVÞðxÞ � Kpðc3f jVÞðxÞ

¼
Z
½ p0;y;pk ;x�

Dx�pk
?Dx�p0

ðc3f jVÞ

¼c
Z
½ p0;y;pk ;x�

Dx�pk
?Dx�p0

f

 !
:

We reach the desired conclusion by using once more the fact that the functionals
separate points. &

In one dimension, it is a classical result that the Lagrange interpolants of a
function, analytic in a sufficiently large region containing the points of interpolation,
converge geometrically fast to the function as the number of points increases. The
corresponding result for Kergin interpolation was proved by Micchelli [10]. In the
infinite-dimensional case we have the following:

Theorem 6.2. Let X and Y be complex Banach spaces and let p ¼ ð p0; p1; p2;yÞ be

an infinite sequence of points in the closed unit ball B ¼ fxAX : jjxjjp1g: Further, let f

be a mapping into Y ; holomorphic on the ball B0 ¼ fxAX : jjxjjp2r þ 1g; where r4e:

If p j denotes the finite subsequence ð p0; p1;y; pjÞ and B00 is any closed ball in X

centered at the origin with radius 2s þ 1; where r4s4e; then

sup
xAB

jj f ðxÞ � Kp j f ðxÞjjp sup
xAB00

jj f ðxÞjj e

s


 � jþ1

:

Hence, if f is bounded on B00; the sequence of Kergin interpolants Kp j f converges

geometrically fast to f on B:

Proof. To begin with, we note that

Dx�pj
?Dx�p0

f ¼ D jþ1f ð�Þðx � pj;y; x � p1; x � p0Þ:
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By the remainder formula of Theorem 6.1 and Proposition 4.1, we obtain for
each xAB;

jj f ðxÞ � Kp j f ðxÞjj

p
Z
½ p0;p1;y;pj ;x�

jjDx�pj
?Dx�p0

f jj

p
Z

Sjþ1

sup
B

jjD jþ1 f jj
� �

jjx � p0jj jjx � p1jj?jjx � pjjj ds1?dsj:

The volume of the simplex over which we integrate is 1=ð j þ 1Þ!: Further, by
Proposition 3.1,

sup
B

jjD jþ1 f jjpð j þ 1Þ jþ1

ð2sÞ jþ1
sup

B00
jj f jj:

Since jjx � pijjp2 for each i and ð j þ 1Þ jþ1=ð j þ 1Þ!oe jþ1; we get

jj f ðxÞ � Kp j f ðxÞjjp sup
xAB00

jj f ðxÞjj e

s


 � jþ1

;

for each xAB: &

Remark 6.3. We point out that, even though f is holomorphic on the ball B0; there is
no guarantee that f is bounded on the smaller ball B00; cf. [12, Proposition 7.15]. To
ensure convergence in general, the assumption on the boundedness of f is needed.
We also want to point out that Theorem 6.2 does not reduce to the known result in
the finite-dimensional case, where it is enough to assume that r4s41:

7. Applications to entire power series

In this section, we prove a convergence theorem for entire power series from a
Banach space X to a Banach space Y : What we mean by an entire power series is a
mapping

f ðxÞ ¼
XN
j¼0

PjðxÞ;

where each Pj is a continuous polynomial homogeneous of degree j from X into Y ;

such that, setting

Mj :¼ sup
jjxjj¼1

jjPjðxÞjj;

we have

lim sup
j-N

M
1=j
j ¼ 0:
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This is equivalent to saying that

lim sup
j-N

c
1=j
j ¼ 0;

where

cj :¼ jjBjjj

and Bj is the polar form of Pj : Indeed, with these notations, we always have

Mjpcjp
j j

j!
Mj :

Consequently, f is an entire power series when

f̂ðzÞ :¼
XN
j¼0

cjz
j

is an entire function of one complex variable. Under these conditions f is infinitely

differentiable and Dk f is itself an entire power series from X into LkðX ;YÞ:

Dk f ðxÞ ¼
XN
j¼0

DkPjðxÞ ¼
XN
j¼k

DkPjðxÞ:

This follows in the classical way from the fact that the series converges uniformly on
every closed ball. This latter fact follows from the relation

DkPjðxÞðh1;y; hkÞ ¼ jð j � 1Þ?ð j � k þ 1ÞBjðx;y; x; h1;y; hkÞ;

which implies

jjDkPjðxÞjjpjð j � 1Þ?ð j � k þ 1Þcjjjxjj j�k: ð7:1Þ

Finally, we will use the notation Mðh;RÞ from the one-dimensional theory for the
maximum of the function h on the closed disc with radius R:

Now we can state our convergence result, which is a generalization of Gelfond’s
theorem about the convergence of Lagrange interpolants to entire functions in C; see
Theorem 3 of Chapter II Part 3 in [7].

Theorem 7.1. Let p ¼ ð p0; p1; p2;yÞ be a sequence of vectors in X ; let p j ¼
ð p0;y; pjÞ; and set rk :¼ jjpkjj: Assume that

(1) f : X-Y is an entire power series,
(2) the sequence ðr0; r1; r2;yÞ is increasing and rk-N;
(3) the counting function N; defined by NðtÞ ¼ k if rkpt and rkþ14t; satisfies the

condition

log Mðf̂; uÞplNðyuÞ;
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for large enough u; where

0ololog
1� y
y

and 0oyo1=2:

Then the sequence ðKpk f Þ of Kergin interpolants converges to f uniformly on every

bounded ball of X :

Proof. Every bounded ball in X is contained in some closed ball centered at 0 and of
radius R; with R different from every rk; kAN: We fix such a radius R and prove
that supjjxjjpR jj f � Kpk f jj converges to 0 as k-N:

Step 1: An error formula for f : For f ðxÞ ¼
P

N

j¼0 PjðxÞ; we let skðxÞ denote the

partial sum
Pk

j¼0 PjðxÞ: Since the Kergin operator is a linear projector, we get

f ðxÞ � Kpk f ðxÞ ¼ ð f � skÞðxÞ � Kpkð f � skÞðxÞ

¼
XN

j¼kþ1

PjðxÞ � Kpk

XN
j¼kþ1

Pjð�Þ
 !

ðxÞ:

Now we may use the continuity of the Kergin operator to obtain

f ðxÞ � Kpk f ðxÞ ¼
XN

j¼kþ1

ðPj � Kpk PjÞðxÞ:

It follows that

jj f ðxÞ � Kpk f ðxÞjjp
XN

j¼kþ1

jjPjðxÞ � Kpk PjðxÞjj: ð7:2Þ

Step 2: An error formula for Pj: By the remainder formula in Theorem 6.1,

we have

PjðxÞ � Kpk PjðxÞ ¼
Z
½ p0;p1;y;pk ;x�

Dx�pk
?Dx�p0

Pj

¼
Z
½ p0;p1;y;pk ;x�

Dkþ1Pjð�Þðx � p0;y; x � pkÞ ds1?dskþ1:

Let us estimate this expression. Define, for sASkþ1;

ypk ;xðsÞ :¼ p0 þ
Xk

i¼1

sið pi � p0Þ þ skþ1ðx � p0Þ

¼ s0p0 þ s1p1 þ?þ skpk þ skþ1x;
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where s0 ¼ 1�
Pkþ1

i¼1 si: By the definition of the simplex, all of the si are non-negative

numbers. This implies that for jjxjjpR; we have

jjypk ;xðsÞjjp s0jjp0jj þ s1jjp1jj þ?þ skjjpkjj þ skþ1jjxjj

p s0r0 þ s1r1 þ?þ skrk þ skþ1R

¼: yrk ;RðsÞ;

where rk ¼ ðr0;y; rkÞ: From (7.1), we deduce that

jjDx�pk
?Dx�p0

Pjðypk ;xÞjj

pjð j � 1Þyð j � k þ 1Þcjjjypk ;xjj j�k�1jjx � p0jj?jjx � pkjj

pjð j � 1Þyð j � k þ 1Þcjy
j�k�1

rk ;R
ðR þ r0Þ?ðR þ rkÞ:

Integrating this over the simplex, we obtain, for jjxjjpR;Z
½ p0;p1;y;pk ;x�

Dx�pk
?Dx�p0

Pj

�����
�����

�����
�����

p
j!cj

ð j � k � 1Þ!

Z
½r0;y;rk ;R�

ð�Þ j�k�1ðR þ r0Þ?ðR þ rkÞ:

On the right-hand side, we recognize an expression from a classical one-variable
remainder formula, namely:

j!cj

ð j � k � 1Þ!

Z
½r0;y;rk ;R�

ð�Þ j�k�1ðR þ r0Þ?ðR þ rkÞ

¼ ðR þ r0Þ?ðR þ rkÞ
ðR � r0Þ?ðR � rkÞ

Z
½r0;y;rk ;R�

DR�r0?DR�rk
cjð�Þ j

¼ ðR þ r0Þ?ðR þ rkÞ
ðR � r0Þ?ðR � rkÞ

½cjR
j � Krkðcjð�Þ jÞðRÞ�:

Note that the right-hand side is well defined, because the radius R has been taken to
be distinct from every ri: Consequently, we have for jjxjjpR and j4k;

jjPjðxÞ � Kpk PjðxÞjjp
ðR þ r0Þ?ðR þ rkÞ
ðR � r0Þ?ðR � rkÞ

½cjR
j � Krkðcjð�Þ jÞðRÞ�

����
����: ð7:3Þ

Step 3: Summing up. Now we will put all of these inequalities together. From (7.2)
and (7.3) it follows that, for jjxjjpR; we have

jj f ðxÞ � Kpk f ðxÞjjp ðR þ r0Þ?ðR þ rkÞ
ðR � r0Þ?ðR � rkÞ

XN
j¼kþ1

½cjR
j � Krkðcjð�Þ jÞðRÞ�

�����
�����

¼ ðR þ r0Þ?ðR þ rkÞ
ðR � r0Þ?ðR � rkÞ

½f̂ðRÞ � Krk f̂ðRÞ�
����

����: ð7:4Þ
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To justify the last line we need to use the continuity of the one-variable Kergin (i.e.
Lagrange) operator. Now we have finally proven that

sup
jjxjjpR

jj f ðxÞ � Kpk f ðxÞjjp
Yk

j¼0

R þ rj

R � rj

����
����jf̂ðRÞ � Krk f̂ðRÞj:

It remains to show that the right-hand term converges to 0 as k-N; and this is a
routine one-variable problem. Except for the fact that we have to deal with the
parasitic first factor, Gelfond’s classical proof works here. By assumption, there is a
number Z such that

1

y
4Z4el þ 1;

and for fixed such Z there is an e40 such that

logðZ� 1Þ � l� 2e40:

Now an application of Hermite’s classical remainder formula (see e.g. [7, Formula
123 of Chapter II Part 3]) with the circle of radius Zrk centered at the origin as the
contour of integration, leads to

jf̂ðRÞ � Krk f̂ðRÞjp Zrk

jZrk � Rj
ð1þ R=rkÞkþ1

ðZ� 1Þkþ1
Mðf̂; ZrkÞ:

By assumption we have for k large, say k4k0;

log Mðf̂; ZrkÞplNðyZrkÞplk:

Since R=rk-0 as k-N; one can find a constant C such that

ðR þ r0Þ?ðR þ rkÞ
ðR � r0Þ?ðR � rkÞ

����
����pCeke

and

1þ R

rk

� �kþ1

pCeke:

Putting it all together: for k4k0 we get that

Yk

j¼0

R þ rj

R � rj

����
����jf̂ðRÞ � Krk f̂ðRÞjpC expð�kðlogðZ� 1Þ � l� 2eÞÞ;

and the conclusion follows, since the factor multiplying �k is positive. &

Remark 7.2. It is perhaps worth pointing out that one special case in which Theorem
7.1 is applicable is when X ¼ Y ¼ E; a complex Banach algebra with unity, and
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f : E-E is an mapping of the form

f ðxÞ ¼
XN
j¼0

ajx
j;

where the aj are elements of E and the radius of convergence is infinite (of course,

ajx
j is to be interpreted as aj � x � x �y � x; with the � denoting the multiplication in E

and the x occurring j times). A concrete example is E ¼ MnðCÞ; the algebra of square
matrices with complex coefficients, and f ðxÞ ¼ expðxÞ; the exponential of a matrix.
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208 (1991) 257–271.

[3] M. Andersson, M. Passare, R. Sigurdsson, Complex convexity and analytic functionals I and II,

preprint, University of Iceland, 1995.

[4] T. Bloom, Kergin Interpolation of entire functions on Cn; Duke Math. J. 48 (1981) 69–83.

[5] J. Diestel, J.J. Uhl Jr., Vector measures, in: Mathematical Surveys and Monographs, Vol. 15,

American Mathematical Society, Providence, RI, 1977.

[6] L. Filipsson, Complex mean-value interpolation and approximation of holomorphic functions,

J. Approx. Theory 91 (1997) 244–278.

[7] A.O. Gelfond, Differenzenrechnung, VEB Deutscher Verlag der Wissenschaften, 1958.
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